Monthly Archives: September 2016

Charla sobre cítricos

Dr. Pedro González-Blanco

Citrus Research and Education Center – Institute of Food and Agricultural Scienceorange-tree-1117420_640– UFlorida

El Dr. González-Blanco participó del 13 International Citrus Congress, que tuvo lugar en Foz de Iguaçu, del 18 al 23 de septiembre y visita nuestro Centro de Investigaciones invitado por la FIBA.  A las 15 horas dará una charla sobre problemáticas que afectan los cítricos en Florida.

 

“Investigación en Ciencias Biológicas: BIOSEGURIDAD”

Curso de Posgrado

27 de octubre al 2 de noviembre de 2016

Lugar: INBIOTEC-CONICET y FIBA – Vieytes 3103 – Mar del Plata – Argentina

Orientación: Investigación y docencia. Dirigido a estudiantes de posgrado en Cs. Biológicas, Cs. Químicas, Bioquímica, Microbiología, Cs. Agrarias, Recursos Naturales, o carreras afines.

DOCENTES   Dras. Susana Goldstein de Fink,   Carmen Stanganelli y  Graciela L. Salerno

 Contenidos mínimos

Riesgo biológico: Bioseguridad y Biocustodia. Riesgo químico. Clasificación de agentes biológicos en grupos de riesgo y de laboratorios en Niveles de Bioseguridad. Reducción, mitigación y contención del riesgo biológico. Barreras. Elementos de protección personal y colectiva. Campanas de extracción y cabinas de seguridad biológica. Normas de precaución estándar y buenas prácticas de laboratorio. Riesgos en Histología y Patología, en el trabajo con animales, en citometría de flujo, asociados a organismos genéticamente modificados, en trabajo a campo, en el trabajo con líneas celulares. Desinfección y esterilización. Evaluación de riesgos. Fuentes de información. Hojas de seguridad de sustancias química y de agentes biológicos. Transporte de muestras. Gestión de residuos.

Ver Información para Inscripción, Cronograma y Horarios, click HERE

Green Waters are a Red Flag: Water Quality and Algal Blooms

https://www.neefusa.org/weather-and-climate/weather/water-quality-month

Algal bloom in Lake ErieA

An algae (cyanobacteria) bloom in Utah Lake. (Rick Egan/Salt Lake Tribune via AP)

“Algae” is a broad term used by scientists and health experts to describe a variety of photosynthetic organisms that use sunlight, water, and carbon dioxide to produce oxygen and energy. Though some species of algae resemble plants, they lack traditional roots, stems, and leaves, putting them in a separate category of their own. Even within this special grouping, there are many different types of algae—some can be smaller than 1/10th of the width of a human hair, while others will grow to be over 100 feet long!

Though we often cannot see them, algae are all around us – found on land, in the sea, and in fresh and brackish water. They’re a natural part of the environment, serving as the base of many food chains—a role that they‘ve had for quite some time. One type of algae, cyanobacteria, or blue-green algae, are the oldest known fossils on Earth, dating back 3.5 billion years! Cyanobacteria are still around today, forming one of the largest groups of bacteria on the planet. If cyanobacteria sound familiar, it might be because you’ve heard that they can be responsible for these harmful algal blooms.

While these algal populations are a natural and integral part of the ecosystem, their numbers can spiral out of control in the right conditions—warm water, lots of sunlight, and with plenty of nutrients available in the water. When these factors come together, sometimes with the help of stormwater runoff, nutrient pollution, and overuse of fertilizer, algae populations can spike, creating what is referred to as an algal bloom.

Algal blooms come in many colors and can have serious negative health impacts on humans and animals by contaminating waterways and drinking supplies. Cyanobacteria is the predominant culprit behind toxic algal blooms in freshwater systems. These bacteria produce cyanotoxins that can impact the liver, the nervous system, respiratory system, and the skin of those who are unfortunate enough to come into contact with them. Drinking, bathing, or swimming in contaminated waters can lead to an array of negative health impacts including blisters, fever, muscle and joint pain, paralysis, asthma, and allergic reactions such as rashes. In extreme cases, the deaths of wildlife and domestic animals have been reported in association with toxic algal blooms, such as was the case with eight manatee deaths in the midst of Florida’s algal bloom in June.

If you see a body of water with surface discoloration such as a red, green or brown tint, especially if the water has a thick, mat-like accumulation of scum on the shoreline and surface coupled with an unpleasant smell, remember these tips:

  • Stay away from it. Do not use the water for swimming, boating or fishing. Keep children and pets away as well.
  • If you accidentally come into contact with water you suspect is contaminated, immediately rinse off with clean, fresh water.
  • Do not attempt to kill the algae with algaecides yourself—by killing the algae, the cells are burst, which can release the toxins into the water. Allow professionals to determine if a chemical treatment is necessary.
  • If you think someone has been poisoned by a toxic algal bloom, seek medical attention immediately.

Bioengineering: Yeast makes diesel-like fuels

Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals

Proc. Natl Acad. Sci. USA http://doi.org/bqn8 published ahead of print September 12(2016)

A yeast has been engineered to produce industrially important oils, including some similar to diesel.

Gregory Stephanopoulos and his colleagues at the Massachusetts Institute of Technology in Cambridge rewired key metabolic pathways and tweaked the structure and expression of certain enzymes in the yeast Yarrowia lipolytica. This allowed the organism to convert low-value carbon compounds into fatty molecules similar to transport fuels and other chemicals that are used in various industries.

Some diesel-like fuels were produced at higher concentrations than similar approaches have achieved, taking the yeast ‘refineries’ a step closer to cost-efficient industrial applications, the authors say.

Image

Curso de Bioquímica Vegetal

grafico1

Becas doctorales Fundación Bunge y Born – Fulbright

Cierre de inscripción: 21 de octubre de 2016

Objetivo

Las Becas doctorales Fundación Bunge y Born – Fulbright están destinadas a investigadores jóvenes, con el objetivo de que puedan avanzar en sus trabajos de investigación para sus tesis doctorales en universidades o centros de investigación en los Estados Unidos, asumiendo el compromiso de finalizarlos y defender su tesis ante la universidad/institución correspondiente, preferentemente en un lapso de hasta 18 meses a partir de su regreso al país. Asimismo, los becarios se comprometerán a aplicar y transferir sus conocimientos en beneficio del desarrollo de la ciencia en Argentina.

Destinatarios:  Investigadores jóvenes con sus trabajos de investigación de doctorado en curso. Los candidatos deben cumplir con las disposiciones del reglamento de la presente convocatoria.

Áreas

Las disciplinas científicas en las que se otorgarán las becas se encuentran detalladas en el formulario de solicitud (pagina 2, sección b, ítem 2).

 Beneficios     Reglamento

Cada beca se otorga por única vez y comprende:

– un pasaje de ida y vuelta al lugar de destino (en clase económica)

– estipendio para mantenimiento

– seguro de salud

Duración: 3 meses (de mayo de 2017 a abril de 2018).

 Cronograma    Guía para postularse

– Cierre de la convocatoria: viernes, 21 de octubre de 2016.  Solicitud

                                                                                                         Carta del Director de Tesis

– Entrevistas a preseleccionados: noviembre de 2016 (fecha a confirmar)

– Anuncio de seleccionados (web y facebook): fecha a confirmar

Consultas:

Comisión de Intercambio Educativo entre Estados Unidos de América y Argentina

Teléfonos: (54 11) 4814-3561/1956 o (54 11) 4811-1494

Email: info@fulbright.com.ar

History of brewer’s yeast revealed

Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts

Cell 166, 13971410 (2016)   Gallone et al.

Highlights

• They sequenced and phenotyped 157 S. cerevisiae yeasts
• Present-day industrial yeasts originate from only a few domesticated ancestors
• Beer yeasts show strong genetic and phenotypic hallmarks of domestication
• Domestication of industrial yeasts predates microbe discovery
 

“Kevin Verstrepen at the University of Leuven and Steven Maere at the University of Ghent, both in Belgium, and their colleagues sequenced the genomes of more than 150 strains of Saccharomyces cerevisiae (pictured) used to make bread, beer and other drinks. An evolutionary tree of the strains revealed distinct families of yeast, such as one used to make wine and another sake, as well as two distantly related groups of ale yeast. The beer yeasts showed the strongest signatures of human influence. Beer-making strains carried variations and duplications of genes that break down maltose and maltotriose, the main sugars in beer. The team used the genomic information to make a hybrid strain that has a high tolerance to alcohol and does not produce 4-vinyl guaiacol, which imbues unpopular clove and smoke flavours.” Nature 537, 282 (15 September 2016)

 

X JORNADAS REGIONALES SOBRE MOSQUITOS

Encontrará el Programa actualizado de las X Jornadas sobre Mosquitos aquí:

Ver programa actualizado al 14/09 aquí

y un mapa para ubicar el lugar donde se realizarán las Joranadas, los lugares de alojamiento (hoteles, hostels), y líneas de coletivo, las encontrará aquí:

xjrm-ubicacion-alojamiento

Gene-Edited Mushroom Bypasses GMO Food Crop Rules

Emily Waltz, Nature 2016

“The U.S. Department of Agriculture has ruled that a white button mushroom that was genetically modified using the CRISPR method is not subject to USDA regulations. The white button mushroom, like the Arctic Apple and some genetically modified potatoes, has been tweaked so that it doesn’t brown as quickly when cut and subjected to oxygen.

Produce typically browns when it comes into contact with oxygen because of an enzyme called polyphenol oxidase. So, in the case of this white button mushroom, a plant pathologist named Yinong Yang from Penn State University used CRISPR to delete some of the genes that create that enzyme. With the process, he was able to dull the browning enzyme’s work by about 30 percent.”has been modified to resist browning.

The common white button mushroom (Agaricus bisporus) has been modified to resist browning. (Image from Jose A. Bernat Bacete/Getty Images)

“The US Department of Agriculture (USDA) will not regulate a mushroom genetically modified with the gene-editing tool CRISPR–Cas9.

The long-awaited decision means that the mushroom can be cultivated and sold without passing through the agency’s regulatory process — making it the first CRISPR-edited organism to receive a green light from the US government.

“The research community will be very happy with the news,” says Caixia Gao, a plant biologist at the Chinese Academy of Sciences’s Institute of Genetics and Developmental Biology in Beijing, who was not involved in developing the mushroom. “I am confident we’ll see more gene-edited crops falling outside of regulatory authority.”

Could fields someday be full of CRISPR-modified crops?

Source click here

“Scientists are already using gene editing enzyme CRISPR to alter human embryos and make antibiotics less resistant. And though experts have predicted that crops were soon to follow, there hasn’t yet been one close to hitting the market.”

“Researchers at DuPont Pioneer have published a study about a strain of corn engineered with CRISPR to be more resistant to drought. Once it receives government approval, this could soon be the first-ever CRISPR-modified crop to go on sale.”